Zwar verfügte die SAP mit der Analytics Cloud und der Analytics Cloud for Planning über Werkzeuge für Datenanalyse und Planung in der Cloud, allerdings ohne nennenswerte Funktionen für das Datenmanagement. Genau diese Lücke soll nun die SAP DWC im Cloud-Angebot der SAP schließen.
SAP DWC 202206 Abb1Abbildung 1: Die SAP Cloud Familie für Business Intelligence

 
Über diesen Blog

Wir wollen Ihnen vorstellen, wie Daten aus einem SAP Quellsystem in der Datawarehouse Cloud konsumiert werden können und welche Schritte zu erledigen sind, bis die Datenverbindung eingerichtet ist. Dann zeigen wir, wie einfach es ist mit einem externen Werkzeug, wie in unserem Beispiel PowerBI darauf zuzugreifen. Anschließend gehen wir darauf ein, wie Daten mit dem bereitgestellten Excel Add-In verwendet werden können. Eine für Daten-Profis sicher spannende Option ist die Zugriffsmöglichkeit über Jupyter Notebooks und Pandas Dataframe. Wir haben uns  die Möglichkeiten angeschaut, die durch die Option SAP BW Bridge für SAP BW Nutzer entstehen.

Wenn Sie mehr an einer Funktionsübersicht, Anwendungsfälle und der allgemeinen Positionierung der SAP DWC erfahren möchten, empfehlen wir Ihnen unsere Themenseite, sowie den Download unseres Whitepapers.

 

Datenbereitstellung in Spaces

Als zentrales Datenzugriffssystem ermöglicht die SAP DWC die unternehmensweite Bereitstellung der Daten in einem sematischen Layer. Daneben aber auch das Extrahieren, Transformieren und die Datenhaltung. Dafür können die Nutzer aus vielen Konnektoren zu verschiedenen SAP-Produkten und NON-SAP Produkten wählen. Die Bereitstellung eines Open Connectors, macht es zudem möglich, jedes gewünschte Produkt an die Data Warehouse Cloud anzubinden. Es folgt zudem dem Trend des Low-Code Ansatzes, den viele Hersteller u.a. Microsoft mit den Power Plattform, schon heute seinen Nutzern zu Verfügung stellt. 

Daten werden in einen sogenannten Space geladen. Dieser ermöglicht es den Fachabteilungen, selbst Daten aufzubereiten und anderen Nutzern zur Verfügung zu stellen. Daten können aus CSV Dateien, aus SAP- und NON-SAP Produkten, sowie freigegebene Datentabellen und Views aus anderen Spaces, geladen werden. Hierfür bietet die Data Warehouse Cloud vorinstallierte Konnektoren, aus denen der Nutzer auswählen kann. Zu SAP-Systemen, stehen dabei 13 vorinstallierte Konnektoren zur Verfügung. Hier kann bspw. eine Verbindung zu einen SAP BW On-Premise System hergestellt werden. Für bestimmte On-Premise Verbindungen ist der Einsatz des SAP-Cloud Connector nötig. Dieser ermöglicht eine sichere Verbindung und den Zugriff Remote Tabellen und File Ablagen. Zu nicht SAP-Produkten stehen dem Kunden Konnektoren zu Microsoft Azure, AWS, Google Cloud sowie Open Source Datenbanken wie Hadoop zur Verfügung. Zukünftig möchte die SAP die Produktspanne der NON SAP-Produkte noch erweitern. Für spezielle Konnektoren, kann ebenfalls eine SAP Open Connector verwendet werden. Hier stehen weitere Konnektoren, wie bspw. Einen Twitter Konnektor, standardmäßig zur Verfügung. Als Beispiel wurde eine Verbindung zu einem S3 Bucket mittels Open Connector und mittels integriertem Connector der Data Warehouse Cloud, hergestellt. Für beide Verbindungen, benötigt der User einen privaten und Zugriffsschlüssel. Dies bedeutet, das für den Zugriff zwingend ein Account für einen User angelegt sein muss, der sich mit dem S3 Bucket verbinden möchte. In Abbildung 2 wird eine Solche Connection dargestellt.

SAP DWC Blog 20220623 Abb2
Abbildung 2: Connection zu einem S3 Bucket

Der Verbindung ist dabei der Endpunkt, also nur Standort, an dem der S3 Bucket liegt, sowie der Stammpfad, also das weitere Pfad mitzugeben, an dem die benötigten Daten, abgelegt sind. Aus der Kombination aus Zugriffschlüssel und Geheimer Schlüssel, wird der Zugriff gewährt. Daten können dann ausschließlich in einem Datenfluss, im Data Builder, in die DWC geladen werden.

Zu beachten gibt es hier: Die genannten Konnektoren können nur dazu verwendet werden, daten in die Data Warehouse Cloud zu laden diese aber nicht, für bspw. Klassifikation mit Tensorflow in einem AWS Stack, nach außen zu geben. Dies ist nicht über die Cloud Konnektoren realisierbar, ist aber über andere Komponenten der Data Warehouse Cloud, durchaus realisierbar.

Für zwei weitere Komponenten, Oracle Database on Premise und Amazon Redshift, muss der DWC zusätzlich ein Treiber mitgegeben werden. Wichtig: Nur die in der Dokumentation genannten Treiber werden unterstützt. Die Dokumentation zu diesen Treibern finden Sie hier

Der Zugeteilte Speicherplatz, den dem Space zur Verfügung steht, ist individuell einstellbar. Ist der Space voll, wird der Space auf gesperrt gesetzt. Er muss dann von einem Administrator wieder freigegeben werden. In diesem Fall, bleiben 24h , bis dieser wieder gesperrt wird, außer:

  • Dem Space wird mehr Speicher zugeordnet
  • Tabellen werden gelöscht

Space_Manager

Abbildung 3: Space Management eine Übersicht über alle Spaces.

 

Data Security mittels Userrollen

Mittels Vergabe von Userrollen, kann der Zugriff innerhalb der Data Warehouse Cloud, sowie ebenfalls innerhalb der Spaces, indem der User zugeordnet ist, eingeschränkt werden.

Vollzugriff auf die komplette Data Warehouse Cloud ist dem Systemeigentümers, sowie dem DW Administrator vorbehalten. Sie können uneingeschränkt Spaces und Nutzer anlegen, sowie auf jedem Space zugreifen. Zusätzlich ist der Systemeigentümer das Recht vorbehalten, die DWHC bei der SAP zu kündigen.

Innerhalb der Spaces kann eine Space Administratoren Rolle vergeben werden. Sie greift nur für die Spaces, indem der User zugeordnet ist. Neben der kompletten Administration des Spaces, kann eine weitere technische Rolle vergeben werden, Die des DW Integrators. Dieser hat die Berechtigung dazu, Verbindungen zu SAP oder NON-SAP Produkten herzustellen, sowie HDI-Container und für 3rd Party BI Tools, eigene Datenbankbenutzer anzulegen.

Für das Modellierung der Daten, kann die Rolle des DW Modeler gewählt werden. Dieser hat uneingeschränkten Zugriff auf den Data- und Business Modeler und kann dort neue Modelle Anlegen oder Modelle bearbeiten.

Für jeden Space können dazu, nochmals zwei reine Consumerrollen angelegt werden. Der DW Viewer hat die Möglichkeit Objekte im Space anzuzeigen. Der DW Consumer, kann mittels SAC oder einem 3rd Party Tool, wie bspw. Power BI, auf die freigebenden Modelle und Daten des Space zugreifen. Der DW Consumer hat allerdings keine Berechtigung, sich auf der Data Warehouse Cloud anzumelden

SAP DWC Blog 20220623 Abb4Abbildung 4: Rollenverteilung und Standardzugriffe der Data Warehouse Cloud

 

Aufbereitung der Daten mit dem Data Builder

Zur Datenaufbereitung bietet die Data Warehouse Cloud mit dem Data Builder ein eigenes Werkzeug, das in jedem Space verfügbar ist. Im Data Builder wird dabei für jede Eingangstabelle, eine neue Tabelle erzeugt. Der User kann dabei selbst bestimmen, wie häufig die Daten benötigt werden. Bei häufigen Datenzugriffen auf eine Tabelle, kann diese wahlweise direkt im In-Memory, also im Hana Speicher der Data Warehouse Cloud, gehalten werden oder ist wahlweise im SSD Speicher auszulagern. Dies gilt auch für Remote Tabellen. Hier wird ein Stand in die Data Warehouse Cloud geladen. Diese können entweder per Zeitplan oder manuell mit neuen Daten versorgt werden. Aber was passiert, wenn die Quelle geändert wird?
Da die Tabellenstruktur bereits angelegt ist, können Veränderungen in der Quelle dazu führen, dass keine Snapshots mehr geladen werden können. Dies ist der Fall, wenn eine oder mehrere Spalten, ersetzt werden.

Tabellen können durch Nutzer weiterverwendet werden, indem diese Daten transformieren, Views mittels SQL Befehlen oder per Drag and Drop erzeugen. Analytische Views, können direkt für die Verwendung freigegeben werden. Mittels Row-Level Security können Datenzugriffe auch innerhalb der Spaces, eingeschränkt werden. Diese greift sogar bei Administratoren und Systemeigentümer. Sollte ein User also auf eine Tabelle zugreifen, in der eine Datenzugriffskontrolle wirkt, ist diese für ihn augenscheinlich leer.SAP DWC Blog 20220623 Abb5Abbildung 5: Beispiel Grafischer View

 

Freigabe und Sharing

Analytische Views können direkt mit oder ohne Datenzugriffskontrolle zur Verfügung gestellt werden. Tabellen mit Dimensionsdaten, können als Dimensionen im Data Builder abgebildet werden. Tabellen oder Views mit analytischen daten zu Analytical Datasets. Im Verbrauchsmodell können Dimensionen und analytische Daten zusammengeführt werden. Tabellen und Views können wahlweise auch mit anderen Spaces geteilt werden. Sie sind dann für die anderen Spaces, im Data Builder, im View als neuer Ordner mit geteilten Objekten Sichtbar.

SAP DWC Blog 20220623 Abb6
Abbildung 6: geteiltes Objekt im Space

Durch eine Live-Verbindung in die SAC, können diese Modelle in Storys und Analytic Applications, importiert und verwendet werden. Eine Integration der DWC in Planungsmodelle ist aktuell von der SAP geplant aber noch nicht realisiert. Um Modelle ohne Probleme, in der SAC nutzen zu können, ist ein wenig Vorarbeit notwendig. Hier geht es im Grunde darum, die Produkte gegenseitig vertraut zu machen. Dazu muss erstmals von der Data Warehouse Cloud, in den Tenant der SAC gewechselt werden. Unter System->Administration->App Integration, muss dabei die Data Warehouse Cloud, als Vertrauenswürdige Ursprungsadresse, eingefügt werden.

SAP DWC Blog 20220623 Abb7

Abbildung 7: Vertrauenswürdige Quellen zulassen

Die Ursprungsadresse, bzw. der Tenantlink der DWC, ist dabei in der DWC selbst, wie in Abbildung 10 dargestellt, zu finden.

DWC-SAC

Abbildung 8: Tenant Link der DWH finden

Nun kann eine Live-Verbindung zwischen den Systemen hergestellt werden. Hierfür wird in der SAC auf den Verbindungstab gewechselt und unter Neu, eine Data Warehouse Cloud Verbindung wie in Abbildung 9 und 10 dargestellt hergestellt.

 

Data_Source_SAC
Abbildung 9: Neue Live-Verbindung das Auswahlfeld der Konnektoren

 

Data_Source_SAC
Abbildung 10: Verbindungsmaske DWC

Nun können diese sowohl in Story als auch in Analytics Application als Datenquelle definiert werden. Dazu wird als Datenquelle : Daten aus Datenquelle verwendet. Indem die neue DWC Verbindung ausgewählt wird. Mittels der Authentifizierungsmethode Single Sign-On, hat der Benutzer nur Zugriff auf die Spaces, in denen er selbst Mitglied ist, sowie auf Modelle und Daten, die für die Analyse freigegeben wurden.

 

Verbindung zu Drittanbieter Analyse-Tools

Power BI Desktop:

Für die Verbindung mit Power Bi werden zunächst zwei Pakete benötigt, die im SAP Support Launchpad, für registrierte Nutzer zur Verfügung stehen. Es wird das Paket SAP HANA Client 2.0 (Version 10 oder höher), sowie die SAPCAR.exe für das entpackend er SAR Datei benötigt.

Es empfiehlt sich beide Dateien im selben Ordner zu Downloaden, da für das Entpacken die Command Line von Windows notwendig ist und sonst der ganze Pfad der SAR Datei angegeben werden müsst.

Mittels Command Line wechseln wird nun in den Ordner, in dem die Dateien gedownloadet wurden, gewechselt und Mittels Befehl: SAPCAR.EXE -xf <Datei>.SAR, die Datei entpackt.

SAP DWC Blog 20220623 Abb11

Abbildung 11: Ordner mit Installationsfiles

Durch Ausführen des Setups, kann der benötigte HDBCI Treiber installierte werden. Danach muss die öffentlich IP-Adresse in der Data Warehouse Cloud in der Erlaubnisliste mit aufgenommen werden, so dass eine Verbindung hergestellt werden kann. Ist die IP-Adresse nicht aufgenommen, wird die Verbindung von der Data Warehouse Cloud geblockt.

SAP DWC Blog 20220623 Abb12
Abbildung 12: IP-Erlaubnisliste

Zusätzlich muss in der Data Warehouse Cloud ein Datenbankbenutzer angelegt werden. Dies ist unter Space -> Datenbankbenutzer Anlegen möglich:

SAP DWC Blog 20220623 Abb13
Abbildung 13: Space-Administrationsübersicht

 

Der Nutzer kann sowohl mit Schreib-, als auch nur mit Lesezugriff ausgestattet sein. In Abbildung 9  beispielsweise wurden für den User „TestJupyter“ Lese- und Schreibrechte zugeteilt, wobei der User PowerBI nur Lesezugriffe besitzt

SAP DWC Blog 20220623 Abb14

Abbildung 14: angelegte Datenbankbenutzer

 

Der Username, URL, Port und das Passwort, können nach erneutem Implementieren des Spaces ausgelesen werden. Dies ist für den nächsten Schritt wichtig.

SAP DWC Blog 20220623 Abb15

Abbildung 15: Anzeige des Benutzers

Im nächsten Schritt muss die neue HDBCI Verbindung in Windows angelegt werden. Dies wird mit dem vorinstallierten Programm ODBC-Datenquelle.

SAP DWC Blog 20220623 Abb16

Abbildung 16: Startseite auf Hinzufügen

 

SAP DWC Blog 20220623 Abb17

Abbildung 17: HDBODBC als Verbindung auswählen

 

           verb1

Abbildung 18: Erstellungsmaske ODBC Driver (Wichtig: Database Type = Single-tenant, Host + Port=Host + Port  des Datenbankbenutzers sowie TLS/SSL Connection ausgewählt

 

Wurde die Verbindung angelegt, kann nun in PowerBI eine ODBC Verbindung angelegt werden. Hierzu werden im Reiter Daten->Datenabrufen->Weitere die ODBC Verbindung ausgewählt.

SAP DWC Blog 20220623 Abb19

Abbildung 19: Auswahl der Verbindung

 

Die gerade angelegte Verbindung ist nun unter Datenquellen zu finden. Nach Bestätigung ist der Datenbankuser und das Kennwort für eine Anmeldung zu übermitteln.

SAP DWC Blog 20220623 Abb20

Abbildung 20: Anmeldemaske DSN Verbindung

 

Anschließend wird der aus PowerBI bekannte Navigator aufgerufen, indem alle Verbindungen angezeigt werden. Es können dabei aber nur Datenmodelle und Views abgerufen werden, die für eine Verwendung vorgesehen sind. Ist ein angeklicktes Element nicht für den Verbrauch vorgesehen, wird eine Fehlermeldung angezeigt.

PowerBI_ODBC

Abbildung 21: Navitgator aus PowerBI

 

Nun kann mit dieser Verbindung ein Report aufgesetzt werden.

Hinweis: Wird für den Datenbankbenutzer ein neues Passwort erzeugt, muss das Passwort unter den Datenquelleneinstellungen (Tab Daten->Daten transformieren->Datenquelleneinstellungen) angepasst werden.

 

Datenbereitstellung in Excel mittels Add-In

Das beliebte Add-In for Microsoft Excel, wird ebenfalls von der Data Warehouse Cloud unterstütz. Vor dem Release 2.8 Version 14, konnte keine direkte Verbindung zur Data Warehouse Cloud hergestellt werden. Hier musste sich über das SAC Plugin, auf die SAC Verbunden werden und über die Live Daten Verbindung zwischen der SAC und der DWC, die Daten geladen werden.

Mit der Änderung in der Version 14, ist es möglich eine direkte Verbindung mit der Data Warehouse Cloud und Excel herzustellen. Hierbei wird in Excel, auf den Tab Analysis gewechselt

SAP DWC Blog 20220623 Abb22

Abbildung 22: Excel eine Übersicht

 

Unter Datenquellen Einfügen->Datenquelle für Analyse definieren (Anmeldefenster Überspringen, kann eine neue Data Warehouse Cloud Verbindung angelegt werden)

SAP DWC Blog 20220623 Abb23

Abbildung 23:Verbindungsanzeige Addin

SAP DWC Blog 20220623 Abb24

Abbildung 24: Neue Cloudverbindung anlegen

Hier kann die Login URL eingetragen werden. Beim Verbinden, erscheint ein Anmeldefenster, indem der User sich mit den Zugangsdaten der Data Warehouse Cloud anmelden muss.

SAP DWC Blog 20220623 Abb25

Abbildung 25: Anmeldemaske Data Warehouse Cloud

 

Der Registrierte User, kann nun alle Modelle und Views laden, die in seinem zugeordneten Space, verfügbar sind und zur Verwendung freigegeben wurden.

SAP DWC Blog 20220623 Abb26

Abbildung 26: Übersicht der Verfügbaren Modelle und Views

Durch die Auswahl eines der Modelle, wird der Ladeprozess angestoßen.

 

Zugriff über Jupyter Notebooks und Pandas Dataframe

Sollen Daten von Data Scientists untersucht werden, besteht auch die Möglichkeit, Daten aus der Data Warehouse Cloud, mittels Anlage eines Database Users, für bspw. Jupyter Notebooks zur Verfügung zu stellen. Dabei ist es jedoch notwendig die öffentlich IP Adresse des zugreifenden PC, Cloud, etc. in die IP Allowlist mit aufzunehmen, da sonst der Zugriff geblockt wird. Die SAP hat hierzu eigene Algorithmen entwickelt, die es ermöglichen, einen Zugriff zu realisieren. Tabellen, können entweder mit eigenen Algorithmen der SAP analysiert werden, oder in ein Pandas Dataframe umgewandelt werden, was es erlaubt, die komplette Bandbreite an Algorithmen auf Datensätze anzuwenden, die zur Verfügung stehen. Nach der Analyse kann das Dataframe wieder in ein Hana Dataframe umgewandelt werden und in die DWHC zurückgespielt werden. Dies ist allerdings nur möglich, wen dem Datenbase User auch Schreibrechte zugeteilt wurden. Die Objekte erscheinen ebenfalls im Data Builder->View (SQL oder Grafisch)->Quellen. Hier wird für jeden Database User des Spaces, eine eigene Verbindung angelegt.

 

SAP DWC Blog 20220623 Abb27

Abbildung 27: Einspeisen von Tabellen, nach der Analyse

 

Von On-Premise in die Cloud mit der SAP BW-Bridge

Die SAP-BW-Bridge stellt den Funktionsumfang von SAP BW direkt in SAP Data Warehouse Cloud bereit. Letztlich handelt es sich bei der SAP BW Bridge also um ein SAP BW System in der Cloud.

SAP DWC Blog 20220623 Abb29

Abbildung 28: SAP BW Bridge und SAP DWC

Mit SAP-BW-Bridge können also die BW typischen Konnektivitätsfunktionen einschließlich des SAP Business Contents (Extraktoren) für die Integration von Daten aus der SAP Business Suite und SAP S/4HANA verwendet werden. Daneben ist auch eine vollständige Migration eines on-prem SAP BW∕4HANA in die Cloud möglich, sowie die Konvertierung einzelner Objekte aus älteren SAP BW Systemen (einschließlich der Metadaten) in SAP-BW-Bridge-Modelle.

Dafür muss in Eclipse ein BW Bridge Projekt angelegt werden. Um mit der BW Bridge allerdings arbeiten zu können, muss der User sowohl für die Data Warehouse Cloud als auch für die BW Bridge freigeschalten sein. Zusätzlich muss im Projekt der Service Key mit eingespielt werden. Dieser ist in der Data Warehouse Cloud unter:

Space BW-Bridge->Verbindungen->Bearbeiten->Service Key kopieren und einfügen. Optional, speichern des Service Key in einer Text-Datei und einspielen der Datei.

Im BW Bridge Projekt, muss das SAP-System als Quellsystem angelegt werden. Anschließend, kann in einem BW Bridge Projekt, wie in dem bisherigen BW Projekt DataStore Objects, Query, ABAP Codes und alle anderen bekannten ABAP Objekte, angelegt werden.

Nach der Ausführung werden ABAP Objekte über die BW Bridge übersetzt und in die Data Warehouse Cloud geladen. 

BW_Bridge_Co

Abbildung 28: Zugriff auf das BW-Bridge Cockpit

 

Fazit

Jüngst kündigte die SAP an, bestehende On-Premise Lösungen, ab 2040 nicht mehr zu unterstützen. So gesehen bleiben Ihnen noch 18 Jahre Zeit für einen Wechsel. Wenn Sie also mit Ihrer bestehenden DataWarehouse Lösung zufrieden sind, gibt es wenig Gründe aktiv zu werden. 

Die meisten unserer Kunden beschäftigt derzeit die Frage, wie sie mehr aus ihren SAP Daten machen können, wie sie diese mehr Nutzergruppen sicher zur Verfügung stellen können, ohne dass der  Aufwand für den Betrieb und Anpassungen aus dem Ruder läuft. Letztlich beschäftigt viele die Frage, wie Fachbereiche vom Data Consumer zum Content Creator gewandelt werden und zukünftig selbst entscheiden können, welche Daten wem zur Verfügung gestellt werden. Stichwort Datendemokratie und Daten als Produkt.

Genau hier bietet die SAP DWC spannende Möglichkeiten. Durch die Organisation der Daten und Datenmodell in Spaces, der Trennung in Daten- und Business- Layer, dem integrierten Datenmarktplatz und vielversprechenden Ansätzen im Bereich des Meta-Data Managements adressiert sie genau diese Anforderungen. Sie folgt dem Trend des technologieoffenen Data Warehouses und dem Low-Code Ansatz, den viele Hersteller u.a. Microsoft, bereits seit einigen Jahren verfolgen. Gut gefallen hat uns auch der für ein SAP Produkt relativ technologieoffene Ansatz der DWC. Drittprodukte wie Datenbanken, BI-Tools oder anderweitige Zugriffe, bis hin zu Werkzeugen für den Data Scientisten können einfach und sicher eingerichtet werden. So sind auch Szenarien zu realisieren, die vorher nicht, oder nur über Umwege möglich waren. Mit Hilfe der SAP BW Bridge sichern Sie ihre bisherigen Investitionen indem Sie ihre bisher in ABAP gebauten Modelle, einfach in die Data Warehouse Cloud übertragen. Weil die Software als SaaS angeboten wird erfolgen Wartung und Betrieb durch die SAP. 

Leider lässt sich SAP diese konzeptionell spannende und aus unserer Sicht vielversprechende Datenplattform aktuell noch recht gut bezahlen. In der kleinsten Ausführung, noch ohne BW Bridge (256 GB SSD, 8vCPUs, 128 GB IN-Memory), soll die Data Warehouse Cloud bereits 51,6 T€ kosten (Zahlen beziehen sich auf den offiziellen Konfigurator der SAP, eventuelle Rabatte sind nicht berücksichtigt).

Wenn Sie mehr an einer Funktionsübersicht, Anwendungsfälle und der allgemeinen Positionierung der SAP DWC erfahren möchten, empfehlen wir Ihnen unsere Themenseite, sowie den Download unseres Whitepapers.

Veröffentlich am 29.6.2022

Thema: Datenplattform, SAP